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Abstract— In recent year, development of software and 

deployment in to the real world based on the new model of 

software as a service (SaaS) and service oriented architecture 

(SOA) convey lot of support to cloud user. Conversely, the 

developer and service provider have to deal with new challenging 

problem before utilizing the befits of the software. The software 

companies moved from desktop application to cloud based 

application set upped in the public cloud.  The offering of service 

by the cloud provider is similar and it growing very fast manner. 

In order to withstand in the competitive market cloud based 

companies must provide good Quality of service (QoS) for cloud 

user. However, giving QoS service with less cost effective amount 

of resources is challenging tasks because workload experience is 

varying time to time. This problem can be resolved with the help 

of proactive dynamic provisioning of resources which estimate 

required resources in advance for software application. In this 

paper, we present the insight of a cloud workload prediction 

module for SaaS provider based on the Autoregressive model.  

Our model also evaluates its accuracy using future work load 

prediction using real sketch of request of web servers. The 

experimental results show that our model achieves good accuracy 

which shows efficiency in resource utilization with minimum 

QoS. 

 

Keywords— Software as a Service, workload predicition, 

Autoregressive model,  webservice performance, Quality of 
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I. INTRODUCTION  

Now a day, software industry uses cloud computing 

technologies as computing paradigm for efficient and flexible 

usage of resources. The services are provided over the internet 

just-in-time and are paid per usage. Cloud based companies 

offered [1] cloud based solution to end users by adopting new 

technologies in to software companies. The shift from desktop 

applications to public Cloud hosted Software as a Service 

(SaaS) business model has intensified the competition for 

Cloud providers. This is due to the presence of multiple 

providers in the current Cloud computing landscape that offer 

services under heterogeneous configurations.  

Selecting particular Cloud service configuration (e.g., VM 

type, VM cores, VM speed, cost, and location) translates to a 

certain level of Quality of Service (QoS) in terms of response 

time, acceptance rate, reliability, etc. In order to survive in 

such a competitive market, Cloud providers must deliver 

acceptable QoS to end-users of the hosted SaaS applications. 

However, one issue that arises from the transition to a SaaS 

model is the fact that the pattern of access to the application 

varies according to the time of the day, day of the week, and 

part of the year. It means that in some periods there are many 

users trying to use the service at the same time, whereas in 

others only a few users are concurrently accessing the servers.  

 This makes static allocation of resources to the SaaS 

application ineffective, as during a period of low demand there 

will be excess of resources available, incurring unnecessary 

cost for the application provider, whereas during high 

utilization periods the available resources may be insufficient, 

leading to poor QoS and loss of costumers and revenue. 

Clouds can circumvent the above problem by enabling 

dynamic provisioning of resources to applications based on 

workload behavior patterns such as request arrival rate and 

service time distributions. 

 This means that extra resources can be allocated for peak 

periods and can be released during the low demand periods, 

increasing utilization of deployed resources and minimizing 

the investment in Cloud resources without loss of QoS to end 

users [2].  

The dispute of dynamic provisioning is the determination of 

the correct amount of resources to be deployed in a given time 

in order to meet QoS expectations in the presence of variable 

workloads examined by Cloud applications. This challenge 

has been tackled mainly via reactive approaches [3, 4, 5] 

which increase or decrease resources when predefined 

thresholds are reached via proactive approaches [6,7,8] which 

react to future load variations before their occurrence.  

 The latter is typically achieved with techniques that can 

monitor, predict, adapt according to these prediction models, 

and capture the relationship between application QoS targets, 

current Cloud resource allocation, and changes in workload 

patterns, to adjust resource allocation configuration on-the-fly. 

In existing system, we introduced architecture for proactive 

dynamic provisioning via workload prediction—which 

determines how many requests per second are expected in the 

near future combined with analytical models to determine the 
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optimal number of resources in the presence of the predicted 

load.   

Even though the proposed architecture renowned the need 

for workload prediction, it did not propose a concrete method 

for workload prediction. In this paper we present the design 

and evaluation of an awareness of its workload prediction 

model using the Autoregressive (AR) model [9]. AR is a 

method for non-stationary time series prediction that is 

composed of an autoregressive and a moving average model, 

and was successfully utilized for time series prediction in 

different domains such as finance. The key contributions of 

this paper are: 
Our system uses Auto regressive model to design, and 

develop a workload prediction module using the ARIMA 

model. Our work applies feedback from latest observed loads 

to update the model on the run. The predicted load is used to 

dynamically provision VMs in an elastic Cloud environment 

for serving the predicted requests taking into consideration 

QoS parameters such as response time and rejection rate; We 

conduct an evaluation of the impact of the achieved accuracy 

in terms of efficiency in resource utilization and QoS of user 

requests.  

The experiment results show that our component achieves 

accuracy of up to 80%, which leads to effectiveness in 

resource utilization with minimal impact in QoS for users. 

The rest of paper organized as follows: section 2 present 

related work on load balancing in SaaS, section 3 present 

application and system model section 4 discuss proposed 

architecture and its components, section 5 present 

performance evaluation the accuracy of our proposed 

prediction architecture. Section 6 present conclusion.  

 

II.RELATED WORK 

 Workload prediction techniques in cloud computing can be 

classified into reactive and proactive methods. Among 

reactive methods, Zhu and Agrawal [3] propose a method 

based on control theory to vertically scale resource 

configurations such as VM types, VM cores, VM speed, and 

VM memory. Vertical scaling is the process of increasing the 

resources available to each Virtual machine. Horizontal 

scaling is process of increasing the number of VM. Their 

approach also addresses the financial plan constraints related 

to the workload implementation. They apply the ARMAX 

model to predict CPU cycle and memory configurations 

required for hosting an application component. 

 In difference to this approach, we pertain the ARIMA 

model to predict the future application workload behavior, 

which is fed into the queueing model for calculating the 

required VM configuration. Bonvin et al. [4] propose a 

reactive method that scales servers based on the expected 

performance and profit generated by changes in the 

provisioning. This technique is able to execute both horizontal 

and vertical scaling.  

 Similar to Bonvin et al., Yang et al. [5] propose a reactive 

method for changing the resource configuration of cluster 

resources driven by the load incurred by the hosted 

application. It is based on user-defined threshold conditions 

and scaling rules that are automatically enacted over a 

virtualized cluster.  Zhang et al. [10] propose a reactive 

workload factoring architecture for hybrid Clouds that 

decomposes incoming workload in base workload and 

trespassing workload. The first one is derived from AR based 

prediction and handled by the local infrastructure, whereas the 

second is handled by a public Cloud.  

 The limitation of reactive platforms is that they react to 

changes in workload only after the change in utilization and 

throughput is observed in the system. Therefore, if the change 

is quicker than the reconfiguration time, end users will observe 

poor QoS until the extra resources are available. Let 

Considering that changes in the workload typically follow 

patterns that are time-dependent, prediction techniques can 

avoid the above problem by  triggering the reconfiguration 

before the expected increase of demand, so when the situation 

arises, the system is already prepared to handle it. 

 Caron et al. [6] propose a method based on pattern 

matching for prediction of grid-like workloads in public 

Clouds. Gong et al. [11] propose a method for predicting 

resource demand of VMs based on predicted application 

workload. Islam et al. [8] apply Artificial Neural Networks 

and linear regression for prediction of resources required for 

applications. Sladescu et al. [7] presents a system based on 

ANN to predict the workload to be experienced by an online 

auction in terms of intensity and location of the peaks. 

 Although techniques such as linear regression can generate 

predictions quicker than ARIMA, they also demand workloads 

that have simpler behavior than those that time series and 

ANN-based methods can accurately predict. Furthermore, 

studies [12, 13] show that web and data center workloads tend 

to present behavior that can be effectively captured by time 

series-based models. Thus, to increase the applicability of the 

proposed architecture, we adopt ARIMA-based prediction for 

our proposed architecture. 

Other domain-specific proactive approaches that are 

related to Clouds include the approach by Nae et al. for 

Massively Multiplayer Online Games [14].  PachecoSanchez 

et al. [15] apply a Markovian model to predict server 

performance in Clouds. Roy et al. [12] apply the ARMA 

model for workload prediction in Clouds with the goal of 

minimizing cost, whereas the main objective of our approach 

is meeting QoS target of applications such as minimizing the 

request rejection rate, or maximizing resource utilization. 

III.APPLICATION AND SYSTEM MODEL 

 The proposed system architecture module consist of public 

cloud provider that offer SaaS services backed by the Platform 

as a service (PaaS) shown in figure 1. The PaaS in turn 

interacts with an IaaS provider that can be a third party 
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provider. The target SaaS provider receives web requests, 

which are processed by the machines that are located at the 

IaaS layer. For scaling up the infrastructure, the target 

provider deploys a number of Virtual Machines (VM) that 

process end user requests. To simplify the management of 

the infrastructure and to take advantage of profiling 

information, a single VM configuration, consisting of CPU 

power, amount of memory, and amount of storage is utilized 

by the SaaS provider.  

 Our system assumes that the application has been profiled 

in the chosen VM configuration, so the provider has 

information about the Virtual machine expected performance. 

An application instance executes on each VM, and since 

current Cloud providers do not support dynamic changes in 

the VM’s specifications without downtime, increasing and 

decreasing the total number of VMs running the application is 

the most suitable option for utilization of elastic computing 

infrastructure, as it brings additional benefits such as higher 

fault tolerance and higher resilience to performance  

degradation caused by VM failures (as the crash of one of the 

VMs will not affect the others, enabling the application to 

continue serving customers using the VMs that are  running). 

 The target application is web applications. Client requests 

consist of http requests that are processed by a web server 

running on the VMs. QoS targets of relevance to the system 

are response time RTs, defined as the maximum negotiated 

time in the SLA for serving a user’s request and rejection rate 

RejeR(Gs), which is the proportion of incoming requests that 

cannot be served without violating RTS[16]. 

IV.PROPOSED SYSTEM ARCHITECTURE 

The important key characteristics of the public cloud are 

elasticity which enables the infrastructure to be scaled or down 

to meet the demand of applications. However, instantiation of 

new VMs is not an immediate operation. Depending on Cloud 

providers’ infrastructure architecture and their hypervisor 

policies, launching a new VM involves a non-negligible start-

up time.   
 Even though Standby VM instances may be helpful for 

tolerating sudden increases in number of requests, those 

standby VMs are more likely to be idle most of the times 

reducing the overall system utilization while increasing the 

operational cost. Furthermore, if the increase in the number of 

requests exceeds the load that standby VMs can handle, the 

problem of poor QoS occurs again. Thus, a different approach 

must be sought for the Cloud provisioning problem. 

 

 
Figure 1.  Adaptive cloud provisioning and it components  

One approach that has been explored is based on workload 

prediction: accurate predictions of the number of end-users’ 

future service requests enable SLA’s QoS targets to be met 

with reduced utilization of Cloud resources. As requests 

pattern vary depending on the application type, this paper 

focuses on request patterns that exhibit seasonal behavior, 

such as requests to Web or online gaming servers [14,17]. To 

overcome the uncertainty in workload patterns in Cloud 

environments and minimize the estimation error in predicting 

future requests while maintaining optimal system utilization, 

in previous work [16] we proposed an adaptive provisioning 

mechanism in order to achieve the following QoS targets: 

Automation: The whole process of provisioning should be 

transparent to users; 
Adaptation: The provisioner should be aware of dynamic and 

uncertain changes in the workload and react to them 

accordingly; 
Performance assurance: In order to meet QoS targets, 

resource allocation in the system must be dynamic. The key 

components of the proposed provisioning system, depicted in  

Architecture figure 1. 

Application Provisioner: Receives accepted requests from 

the Admission Control module and forwards them to VMs that 

have enough capacity to process them. It also keeps track of 

the performance of the VMs. This information is passed to the 

Load Predictor and Performance Modeler. The Application 

Provisioner also receives from such module the expected 

number of VMs required by the application. If the expected 

number of VMs differs from the number of provisioned VMs, 

the number is adjusted accordingly by either provisioning new 

VMs or decommissioning unnecessary VMs. 

Load Predictor and Performance Modeler: Decides the 

number of VMs to be allocated, based on the predicted 

demand by the Workload Analyzer module and on the 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017 
ISSN: 2320 – 8791 (Impact Factor: 2.317)    

www.ijreat.org 

www.ijreat.org 
                                           Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)                67 

 

observed performance of running VMs by the Application 

Provisioner.  

 The performance is modeled via queueing networks, 

which, based on the predicted arrival rate of requests, return 

the minimum number of VMs that is able to meet the QoS 

metrics. Workload Analyzer: Generates an estimation of 

future demand for the application. This information is then 

passed to the Load Predictor and Performance Modeler 

module. To construct the proposed architecture effective, a 

strong knowledge about the application workload behavior is 

required by the system so the performance model can be 

accurate. Therefore, the most suitable deployment model for 

the architecture is Software as a Service, where a queueing 

model can be built for each application offered to end users as 

a service.  

 In the SaaS layer, the admission control module ensures 

that no application instance will get further requests if the 

capacity of the queue is exhausted. In this case, all the 

upcoming requests are rejected, because otherwise it is most 

likely that Ts would be violated. Accepted requests are 

forwarded to the Cloud provider’s PaaS layer where the 

proposed system is implemented.  

 In our Existing work [9], the system architecture was 

presented in a high-level view, without presenting a concrete 

implementation of each of its components. In this paper, we 

present a realization of the Workload Analyzer component of 

the architecture. The prediction method uses the Auto-
Regressive (AR) model. The prediction gives the Application 

Provisioner enough time to react against any precipitous 

increase in workload by starting new VMs without 

compromising Ts while maintaining the overall system 

utilization above a given threshold. 

A. Work load analyzer  

Our system uses Auto Regressive time series process to 

predict the workload cable by each virtual machine.  AR has 

been chosen for the implementation of our module because the 

underlying workload fits well in the model: previous research 

observed that web workloads tend to present strong auto-

correlation [18, 19] From the beginning of the execution, the 

historical workload data is fed into the Workload Analyzer, 

where it fits the AR model on them.  

 When the system is operational, it delivers an estimation of 

the workload with one time-interval in advance. The length of 

the time interval can be adjusted to better fit the specific 

application. The only requirement for efficient system 

utilization is that the time interval should be long enough to 

allow extra VMs to be deployed. Therefore, time windows as 

short as 10 minutes could be suitable depending on the 

selected Cloud provider [18].  

 The request time series contains the number of observed 

requests at each time interval. It is implemented as a cyclic 

buffer so that at the next prediction cycle, the actual number of 

requests (obtained from the original dataset) is added to the 

time series used in prediction while discarding the oldest 

value. After constructing the request time series, the process of 

fitting the ARIMA model is initiated based on the Box-Jenkins 

method [9]. 
 According to this method, the time series must be 

transformed into a stationary time series, that is, for each (Xt 

Xt+� ), being the time difference between two data points, the 

mean and variance of the process must be constant and 

independent of t. In addition, the auto-covariance between Xt 

and Xt+�  should be affected only by �. This transformation is 

achieved by differencing the original time series. The number 

of times the original time series has to be differenced until it 

becomes stationary constitutes the d parameter of the AR 

(X,Y,Z)  model. 

 The values of X and Z are determined by analyzing 

the autocorrelation and partial autocorrelation plots of the  

historical data, respectively. In the context of this work, 

historical data means the observed number of requests per 

second received by the system in some past time interval. The 

autocorrelation plot is used to determine how random a dataset 

is.  In the case of random data, the autocorrelation values 

approach zero for all time-lagged values, otherwise, one or 

more autocorrelation values approach 1 or -1. In the 

autocorrelation plot, the horizontal axis represents the time 

lags. Values on the vertical axis are calculated using the 

autocorrelation coefficient Rh: 

 

�� �
��

��
                      (1) 

Where Ch is the auto-covariance function defined as: 
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where N is the number of samples and X is the average 
of samples Xt; t = 1:::N . C0 is the variance function: 
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The partial autocorrelation at � is the autocorrelation between 

Xt and Xt_	� that is accounted only by lags above � - 1. If a 

stationary time series has an auto regression component of 

order p, its partial autocorrelation plot falls below the 

significant level at _ = p + 1. The number of lags before the 

autocorrelation values drop below the significant level is the 

value of q for the moving average component of the ARIMA 

model. Using the above method to determine the terms X, Y, 

and q of the ARIMA model, the historical workload 

information is fit to the model to be used for prediction of 

future workload values. 

B. Auto Regeressive  sysem design  

 The class diagram of the ARIMA-based workload 

prediction system is shown on Figure 2. The ARIMA 

Workload Analyzer is the core component of the system and 

realizes the Workload Analyzer component of Figure 1. By 
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implementing the IFeedbackable interface, it is capable of 

taking feedbacks. In our system, current workload 

information, received from external components is modeled as 

a feedback signals and fed into the ARIMA Workload 

Analyzer to make it aware of the most recent workload 

changes.  

 

 
 

Figure 2. Class diagram for work load predication  

ARIMA Workload Analyzer stores the given feedback signals 

into a cyclic buffer. The length of this buffer, which 

corresponds to the number of time intervals in past affecting 

the current prediction value, is configured at the start of the 

system based on characteristics of the application workload 

(number of received requests per second). ARIMA Workload 

accomplishes the workload prediction through the Forecaster 

class. This class has a connection to a statistical backend (the 

R forecast package [19], which for simplicity is not presented 

on the diagram).   

 

 
Figure 3 workload prediction steps and its components 

 

It accepts a time series from the ARIMA Workload Analyzer 

and prepares it for submission to the statistic engine, where 

ARIMA model is fitted on them. For a given time series, the 

statistical back-end replies with a predicted value, along with 

its corresponding 80% and 95% confidence levels. The 

Forecaster class then parses and encapsulates this reply into an 

instance of Forecast Entity class and passes it back to the 

ARIMA Workload Analyzer. The accuracy of the ARIMA-

based workload prediction is evaluated in the next section. 

The steps of the prediction procedure and its components are 

shown on Figure 3.  

V.PERFORMANCE EVALUATION  

The system was evaluated with real traces of requests to the 

web servers from the Wikimedia Foundation. These traces 

contain the number of http requests received for each of the 

project’s resources (static pages, images, etc) aggregated in 1-

hour intervals and are publicly available for download. It also 

contains the project name associated with each resource being 

requested and the language of each accessed resource.  

We consider only requests to English Wikipedia resources 

in these experiments. An analysis of patterns of web requests 

to Wikipedia servers was presented by Urdaneta et al. [17]. In 

order to observe weekly patterns, we use four weeks of the 

traces, dated from midnight, 01 January 2015 to 5 pm, 04 

February 2015.  

The first three weeks are used for training purposes. The 

requests corresponding to such a period are transformed to a 

time series process (i.e. the values X; Y and Z of the ARIMA 

model are defined). At runtime, the model is constantly 

updated: whenever new requests arrive, they are incorporated 

to the time series and older data is removed from the time 

series in the same amount.  

The fourth week is used for evaluation purposes. Based on the 

training dataset, the demand for each hour of the fourth week 

is predicted. The output of the prediction procedure is a  

number, accompanied by two confidence ranges, covering the 

80% and 95% bands, for each hour of the fourth week. Figure 

4 presents the predicted and actual values (i.e., the value 

observed in the traces) and corresponding confidence ranges, 

for the fourth week of the workload. The accuracy of the 

prediction is evaluated using various error metrics.  

  
Metric  Predicted  Low  High 

Root Mean square deviation 

RMSD  

1156 1580 1985 

Normalized Root Mean square 

deviation (NRMSD) 

0.13 0.22 0.26 

Mean absolute deviation 

(MAD) 

886.98 1154.65 1468.36 

Mean absolute percentage error 

(MAPE)  

0.08 0.12 0.18 

Table1. Prediction accuracy by various metrics 

 The results are presented in Table 1. The Predicted column 

contains the accuracy according to different metrics. The Low 

80% and High 80% contain the limits for the 80% confidence 

interval for the prediction. The table also reports the same for 

the 95% confidence interval. The output of the confidence 
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intervals can be used when one is willing to sacrifice SLA in 

favor of utilization (by choosing the lower 80% or 95%) or 

decreasing utilization in order to provide better response times 

(by choosing the higher 80% and 95%). 

VI.CONCLUSION  

Our system introduced the prediction based on the ARIMA 

model and evaluated its accuracy of future workload 

prediction using real traces of requests to web servers from the 

Wikimedia Foundation. We also evaluated the impact of the 

achieved accuracy in terms of efficiency in resource utilization 

and QoS. Simulation results showed that our model is able to 

achieve an accuracy of up to 91%, which leads to efficiency in 

resource utilization with minimal impact in response time for 

users.  

In future, we plan to integrate to the architecture a reactive 

module that can act as a second line of defense against poor 

QoS by compensating errors in the prediction with ad hoc 

decision on dynamic provisioning. We also plan to explore 

more robust techniques for workload prediction, able to 

predict peak in resource utilization that cannot be fit in the 

ARIMA model. With these techniques available, we plan to 

investigate methods for automatic selection of the best 

approach for workload modeling and load prediction given 

user-defined accuracy and computational requirement trade-

offs.  
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