
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 64

Load Balancing And Performance Evaluation In Saas Layer Using

Autoregressive Model

S.Sankara Narayanan1, Dr. M.Ramakrishnan2

1Research Scholar, Department of Computer Science and Engineering,

 Anna University, Chennai
2Professor and Head, Department of Computer application, School of information Technology,

 Madurai Kamaraj University, Tamil Nadu

Abstract— In recent year, development of software and

deployment in to the real world based on the new model of

software as a service (SaaS) and service oriented architecture

(SOA) convey lot of support to cloud user. Conversely, the

developer and service provider have to deal with new challenging

problem before utilizing the befits of the software. The software

companies moved from desktop application to cloud based

application set upped in the public cloud. The offering of service

by the cloud provider is similar and it growing very fast manner.

In order to withstand in the competitive market cloud based

companies must provide good Quality of service (QoS) for cloud

user. However, giving QoS service with less cost effective amount

of resources is challenging tasks because workload experience is

varying time to time. This problem can be resolved with the help

of proactive dynamic provisioning of resources which estimate

required resources in advance for software application. In this

paper, we present the insight of a cloud workload prediction

module for SaaS provider based on the Autoregressive model.

Our model also evaluates its accuracy using future work load

prediction using real sketch of request of web servers. The

experimental results show that our model achieves good accuracy

which shows efficiency in resource utilization with minimum

QoS.

Keywords— Software as a Service, workload predicition,

Autoregressive model, webservice performance, Quality of

service(Qos).

I. INTRODUCTION

Now a day, software industry uses cloud computing

technologies as computing paradigm for efficient and flexible

usage of resources. The services are provided over the internet

just-in-time and are paid per usage. Cloud based companies

offered [1] cloud based solution to end users by adopting new

technologies in to software companies. The shift from desktop

applications to public Cloud hosted Software as a Service

(SaaS) business model has intensified the competition for

Cloud providers. This is due to the presence of multiple

providers in the current Cloud computing landscape that offer

services under heterogeneous configurations.

Selecting particular Cloud service configuration (e.g., VM

type, VM cores, VM speed, cost, and location) translates to a

certain level of Quality of Service (QoS) in terms of response

time, acceptance rate, reliability, etc. In order to survive in

such a competitive market, Cloud providers must deliver

acceptable QoS to end-users of the hosted SaaS applications.

However, one issue that arises from the transition to a SaaS

model is the fact that the pattern of access to the application

varies according to the time of the day, day of the week, and

part of the year. It means that in some periods there are many

users trying to use the service at the same time, whereas in

others only a few users are concurrently accessing the servers.

 This makes static allocation of resources to the SaaS

application ineffective, as during a period of low demand there

will be excess of resources available, incurring unnecessary

cost for the application provider, whereas during high

utilization periods the available resources may be insufficient,

leading to poor QoS and loss of costumers and revenue.

Clouds can circumvent the above problem by enabling

dynamic provisioning of resources to applications based on

workload behavior patterns such as request arrival rate and

service time distributions.

 This means that extra resources can be allocated for peak

periods and can be released during the low demand periods,

increasing utilization of deployed resources and minimizing

the investment in Cloud resources without loss of QoS to end

users [2].

The dispute of dynamic provisioning is the determination of

the correct amount of resources to be deployed in a given time

in order to meet QoS expectations in the presence of variable

workloads examined by Cloud applications. This challenge

has been tackled mainly via reactive approaches [3, 4, 5]

which increase or decrease resources when predefined

thresholds are reached via proactive approaches [6,7,8] which

react to future load variations before their occurrence.

 The latter is typically achieved with techniques that can

monitor, predict, adapt according to these prediction models,

and capture the relationship between application QoS targets,

current Cloud resource allocation, and changes in workload

patterns, to adjust resource allocation configuration on-the-fly.

In existing system, we introduced architecture for proactive

dynamic provisioning via workload prediction—which

determines how many requests per second are expected in the

near future combined with analytical models to determine the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 65

optimal number of resources in the presence of the predicted

load.

Even though the proposed architecture renowned the need

for workload prediction, it did not propose a concrete method

for workload prediction. In this paper we present the design

and evaluation of an awareness of its workload prediction

model using the Autoregressive (AR) model [9]. AR is a

method for non-stationary time series prediction that is

composed of an autoregressive and a moving average model,

and was successfully utilized for time series prediction in

different domains such as finance. The key contributions of

this paper are:
Our system uses Auto regressive model to design, and

develop a workload prediction module using the ARIMA

model. Our work applies feedback from latest observed loads

to update the model on the run. The predicted load is used to

dynamically provision VMs in an elastic Cloud environment

for serving the predicted requests taking into consideration

QoS parameters such as response time and rejection rate; We

conduct an evaluation of the impact of the achieved accuracy

in terms of efficiency in resource utilization and QoS of user

requests.

The experiment results show that our component achieves

accuracy of up to 80%, which leads to effectiveness in

resource utilization with minimal impact in QoS for users.

The rest of paper organized as follows: section 2 present

related work on load balancing in SaaS, section 3 present

application and system model section 4 discuss proposed

architecture and its components, section 5 present

performance evaluation the accuracy of our proposed

prediction architecture. Section 6 present conclusion.

II.RELATED WORK

 Workload prediction techniques in cloud computing can be

classified into reactive and proactive methods. Among

reactive methods, Zhu and Agrawal [3] propose a method

based on control theory to vertically scale resource

configurations such as VM types, VM cores, VM speed, and

VM memory. Vertical scaling is the process of increasing the

resources available to each Virtual machine. Horizontal

scaling is process of increasing the number of VM. Their

approach also addresses the financial plan constraints related

to the workload implementation. They apply the ARMAX

model to predict CPU cycle and memory configurations

required for hosting an application component.

 In difference to this approach, we pertain the ARIMA

model to predict the future application workload behavior,

which is fed into the queueing model for calculating the

required VM configuration. Bonvin et al. [4] propose a

reactive method that scales servers based on the expected

performance and profit generated by changes in the

provisioning. This technique is able to execute both horizontal

and vertical scaling.

 Similar to Bonvin et al., Yang et al. [5] propose a reactive

method for changing the resource configuration of cluster

resources driven by the load incurred by the hosted

application. It is based on user-defined threshold conditions

and scaling rules that are automatically enacted over a

virtualized cluster. Zhang et al. [10] propose a reactive

workload factoring architecture for hybrid Clouds that

decomposes incoming workload in base workload and

trespassing workload. The first one is derived from AR based

prediction and handled by the local infrastructure, whereas the

second is handled by a public Cloud.

 The limitation of reactive platforms is that they react to

changes in workload only after the change in utilization and

throughput is observed in the system. Therefore, if the change

is quicker than the reconfiguration time, end users will observe

poor QoS until the extra resources are available. Let

Considering that changes in the workload typically follow

patterns that are time-dependent, prediction techniques can

avoid the above problem by triggering the reconfiguration

before the expected increase of demand, so when the situation

arises, the system is already prepared to handle it.

 Caron et al. [6] propose a method based on pattern

matching for prediction of grid-like workloads in public

Clouds. Gong et al. [11] propose a method for predicting

resource demand of VMs based on predicted application

workload. Islam et al. [8] apply Artificial Neural Networks

and linear regression for prediction of resources required for

applications. Sladescu et al. [7] presents a system based on

ANN to predict the workload to be experienced by an online

auction in terms of intensity and location of the peaks.

 Although techniques such as linear regression can generate

predictions quicker than ARIMA, they also demand workloads

that have simpler behavior than those that time series and

ANN-based methods can accurately predict. Furthermore,

studies [12, 13] show that web and data center workloads tend

to present behavior that can be effectively captured by time

series-based models. Thus, to increase the applicability of the

proposed architecture, we adopt ARIMA-based prediction for

our proposed architecture.

Other domain-specific proactive approaches that are

related to Clouds include the approach by Nae et al. for

Massively Multiplayer Online Games [14]. PachecoSanchez

et al. [15] apply a Markovian model to predict server

performance in Clouds. Roy et al. [12] apply the ARMA

model for workload prediction in Clouds with the goal of

minimizing cost, whereas the main objective of our approach

is meeting QoS target of applications such as minimizing the

request rejection rate, or maximizing resource utilization.

III.APPLICATION AND SYSTEM MODEL

 The proposed system architecture module consist of public

cloud provider that offer SaaS services backed by the Platform

as a service (PaaS) shown in figure 1. The PaaS in turn

interacts with an IaaS provider that can be a third party

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 66

provider. The target SaaS provider receives web requests,

which are processed by the machines that are located at the

IaaS layer. For scaling up the infrastructure, the target

provider deploys a number of Virtual Machines (VM) that

process end user requests. To simplify the management of

the infrastructure and to take advantage of profiling

information, a single VM configuration, consisting of CPU

power, amount of memory, and amount of storage is utilized

by the SaaS provider.

 Our system assumes that the application has been profiled

in the chosen VM configuration, so the provider has

information about the Virtual machine expected performance.

An application instance executes on each VM, and since

current Cloud providers do not support dynamic changes in

the VM’s specifications without downtime, increasing and

decreasing the total number of VMs running the application is

the most suitable option for utilization of elastic computing

infrastructure, as it brings additional benefits such as higher

fault tolerance and higher resilience to performance

degradation caused by VM failures (as the crash of one of the

VMs will not affect the others, enabling the application to

continue serving customers using the VMs that are running).

 The target application is web applications. Client requests

consist of http requests that are processed by a web server

running on the VMs. QoS targets of relevance to the system

are response time RTs, defined as the maximum negotiated

time in the SLA for serving a user’s request and rejection rate

RejeR(Gs), which is the proportion of incoming requests that

cannot be served without violating RTS[16].

IV.PROPOSED SYSTEM ARCHITECTURE

The important key characteristics of the public cloud are

elasticity which enables the infrastructure to be scaled or down

to meet the demand of applications. However, instantiation of

new VMs is not an immediate operation. Depending on Cloud

providers’ infrastructure architecture and their hypervisor

policies, launching a new VM involves a non-negligible start-

up time.
 Even though Standby VM instances may be helpful for

tolerating sudden increases in number of requests, those

standby VMs are more likely to be idle most of the times

reducing the overall system utilization while increasing the

operational cost. Furthermore, if the increase in the number of

requests exceeds the load that standby VMs can handle, the

problem of poor QoS occurs again. Thus, a different approach

must be sought for the Cloud provisioning problem.

Figure 1. Adaptive cloud provisioning and it components

One approach that has been explored is based on workload

prediction: accurate predictions of the number of end-users’

future service requests enable SLA’s QoS targets to be met

with reduced utilization of Cloud resources. As requests

pattern vary depending on the application type, this paper

focuses on request patterns that exhibit seasonal behavior,

such as requests to Web or online gaming servers [14,17]. To

overcome the uncertainty in workload patterns in Cloud

environments and minimize the estimation error in predicting

future requests while maintaining optimal system utilization,

in previous work [16] we proposed an adaptive provisioning

mechanism in order to achieve the following QoS targets:

Automation: The whole process of provisioning should be

transparent to users;
Adaptation: The provisioner should be aware of dynamic and

uncertain changes in the workload and react to them

accordingly;
Performance assurance: In order to meet QoS targets,

resource allocation in the system must be dynamic. The key

components of the proposed provisioning system, depicted in

Architecture figure 1.

Application Provisioner: Receives accepted requests from

the Admission Control module and forwards them to VMs that

have enough capacity to process them. It also keeps track of

the performance of the VMs. This information is passed to the

Load Predictor and Performance Modeler. The Application

Provisioner also receives from such module the expected

number of VMs required by the application. If the expected

number of VMs differs from the number of provisioned VMs,

the number is adjusted accordingly by either provisioning new

VMs or decommissioning unnecessary VMs.

Load Predictor and Performance Modeler: Decides the

number of VMs to be allocated, based on the predicted

demand by the Workload Analyzer module and on the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 67

observed performance of running VMs by the Application

Provisioner.

 The performance is modeled via queueing networks,

which, based on the predicted arrival rate of requests, return

the minimum number of VMs that is able to meet the QoS

metrics. Workload Analyzer: Generates an estimation of

future demand for the application. This information is then

passed to the Load Predictor and Performance Modeler

module. To construct the proposed architecture effective, a

strong knowledge about the application workload behavior is

required by the system so the performance model can be

accurate. Therefore, the most suitable deployment model for

the architecture is Software as a Service, where a queueing

model can be built for each application offered to end users as

a service.

 In the SaaS layer, the admission control module ensures

that no application instance will get further requests if the

capacity of the queue is exhausted. In this case, all the

upcoming requests are rejected, because otherwise it is most

likely that Ts would be violated. Accepted requests are

forwarded to the Cloud provider’s PaaS layer where the

proposed system is implemented.

 In our Existing work [9], the system architecture was

presented in a high-level view, without presenting a concrete

implementation of each of its components. In this paper, we

present a realization of the Workload Analyzer component of

the architecture. The prediction method uses the Auto-
Regressive (AR) model. The prediction gives the Application

Provisioner enough time to react against any precipitous

increase in workload by starting new VMs without

compromising Ts while maintaining the overall system

utilization above a given threshold.

A. Work load analyzer

Our system uses Auto Regressive time series process to

predict the workload cable by each virtual machine. AR has

been chosen for the implementation of our module because the

underlying workload fits well in the model: previous research

observed that web workloads tend to present strong auto-

correlation [18, 19] From the beginning of the execution, the

historical workload data is fed into the Workload Analyzer,

where it fits the AR model on them.

 When the system is operational, it delivers an estimation of

the workload with one time-interval in advance. The length of

the time interval can be adjusted to better fit the specific

application. The only requirement for efficient system

utilization is that the time interval should be long enough to

allow extra VMs to be deployed. Therefore, time windows as

short as 10 minutes could be suitable depending on the

selected Cloud provider [18].

 The request time series contains the number of observed

requests at each time interval. It is implemented as a cyclic

buffer so that at the next prediction cycle, the actual number of

requests (obtained from the original dataset) is added to the

time series used in prediction while discarding the oldest

value. After constructing the request time series, the process of

fitting the ARIMA model is initiated based on the Box-Jenkins

method [9].
 According to this method, the time series must be

transformed into a stationary time series, that is, for each (Xt

Xt+�), being the time difference between two data points, the

mean and variance of the process must be constant and

independent of t. In addition, the auto-covariance between Xt

and Xt+� should be affected only by �. This transformation is

achieved by differencing the original time series. The number

of times the original time series has to be differenced until it

becomes stationary constitutes the d parameter of the AR

(X,Y,Z) model.

 The values of X and Z are determined by analyzing

the autocorrelation and partial autocorrelation plots of the

historical data, respectively. In the context of this work,

historical data means the observed number of requests per

second received by the system in some past time interval. The

autocorrelation plot is used to determine how random a dataset

is. In the case of random data, the autocorrelation values

approach zero for all time-lagged values, otherwise, one or

more autocorrelation values approach 1 or -1. In the

autocorrelation plot, the horizontal axis represents the time

lags. Values on the vertical axis are calculated using the

autocorrelation coefficient Rh:

�� �
��

��
 (1)

Where Ch is the auto-covariance function defined as:

�� �
	

	∑
�� � �����
���	 � ��

��
��	 								 (2)

where N is the number of samples and X is the average
of samples Xt; t = 1:::N . C0 is the variance function:

�� �
	

∑
�� � �����

��	 (3)

The partial autocorrelation at � is the autocorrelation between

Xt and Xt_	� that is accounted only by lags above � - 1. If a

stationary time series has an auto regression component of

order p, its partial autocorrelation plot falls below the

significant level at _ = p + 1. The number of lags before the

autocorrelation values drop below the significant level is the

value of q for the moving average component of the ARIMA

model. Using the above method to determine the terms X, Y,

and q of the ARIMA model, the historical workload

information is fit to the model to be used for prediction of

future workload values.

B. Auto Regeressive sysem design

 The class diagram of the ARIMA-based workload

prediction system is shown on Figure 2. The ARIMA

Workload Analyzer is the core component of the system and

realizes the Workload Analyzer component of Figure 1. By

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 68

implementing the IFeedbackable interface, it is capable of

taking feedbacks. In our system, current workload

information, received from external components is modeled as

a feedback signals and fed into the ARIMA Workload

Analyzer to make it aware of the most recent workload

changes.

Figure 2. Class diagram for work load predication

ARIMA Workload Analyzer stores the given feedback signals

into a cyclic buffer. The length of this buffer, which

corresponds to the number of time intervals in past affecting

the current prediction value, is configured at the start of the

system based on characteristics of the application workload

(number of received requests per second). ARIMA Workload

accomplishes the workload prediction through the Forecaster

class. This class has a connection to a statistical backend (the

R forecast package [19], which for simplicity is not presented

on the diagram).

Figure 3 workload prediction steps and its components

It accepts a time series from the ARIMA Workload Analyzer

and prepares it for submission to the statistic engine, where

ARIMA model is fitted on them. For a given time series, the

statistical back-end replies with a predicted value, along with

its corresponding 80% and 95% confidence levels. The

Forecaster class then parses and encapsulates this reply into an

instance of Forecast Entity class and passes it back to the

ARIMA Workload Analyzer. The accuracy of the ARIMA-

based workload prediction is evaluated in the next section.

The steps of the prediction procedure and its components are

shown on Figure 3.

V.PERFORMANCE EVALUATION

The system was evaluated with real traces of requests to the

web servers from the Wikimedia Foundation. These traces

contain the number of http requests received for each of the

project’s resources (static pages, images, etc) aggregated in 1-

hour intervals and are publicly available for download. It also

contains the project name associated with each resource being

requested and the language of each accessed resource.

We consider only requests to English Wikipedia resources

in these experiments. An analysis of patterns of web requests

to Wikipedia servers was presented by Urdaneta et al. [17]. In

order to observe weekly patterns, we use four weeks of the

traces, dated from midnight, 01 January 2015 to 5 pm, 04

February 2015.

The first three weeks are used for training purposes. The

requests corresponding to such a period are transformed to a

time series process (i.e. the values X; Y and Z of the ARIMA

model are defined). At runtime, the model is constantly

updated: whenever new requests arrive, they are incorporated

to the time series and older data is removed from the time

series in the same amount.

The fourth week is used for evaluation purposes. Based on the

training dataset, the demand for each hour of the fourth week

is predicted. The output of the prediction procedure is a

number, accompanied by two confidence ranges, covering the

80% and 95% bands, for each hour of the fourth week. Figure

4 presents the predicted and actual values (i.e., the value

observed in the traces) and corresponding confidence ranges,

for the fourth week of the workload. The accuracy of the

prediction is evaluated using various error metrics.

Metric Predicted Low High

Root Mean square deviation

RMSD

1156 1580 1985

Normalized Root Mean square

deviation (NRMSD)

0.13 0.22 0.26

Mean absolute deviation

(MAD)

886.98 1154.65 1468.36

Mean absolute percentage error

(MAPE)

0.08 0.12 0.18

Table1. Prediction accuracy by various metrics

 The results are presented in Table 1. The Predicted column

contains the accuracy according to different metrics. The Low

80% and High 80% contain the limits for the 80% confidence

interval for the prediction. The table also reports the same for

the 95% confidence interval. The output of the confidence

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 5, Issue 1, Feb - Mar, 2017
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 69

intervals can be used when one is willing to sacrifice SLA in

favor of utilization (by choosing the lower 80% or 95%) or

decreasing utilization in order to provide better response times

(by choosing the higher 80% and 95%).

VI.CONCLUSION

Our system introduced the prediction based on the ARIMA

model and evaluated its accuracy of future workload

prediction using real traces of requests to web servers from the

Wikimedia Foundation. We also evaluated the impact of the

achieved accuracy in terms of efficiency in resource utilization

and QoS. Simulation results showed that our model is able to

achieve an accuracy of up to 91%, which leads to efficiency in

resource utilization with minimal impact in response time for

users.

In future, we plan to integrate to the architecture a reactive

module that can act as a second line of defense against poor

QoS by compensating errors in the prediction with ad hoc

decision on dynamic provisioning. We also plan to explore

more robust techniques for workload prediction, able to

predict peak in resource utilization that cannot be fit in the

ARIMA model. With these techniques available, we plan to

investigate methods for automatic selection of the best

approach for workload modeling and load prediction given

user-defined accuracy and computational requirement trade-

offs.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, Jun. 2009

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski,G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Communications of the ACM, vol. 53,no.
4, pp. 50–58, Apr. 2010.

[3] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints
for adaptive applications in cloud environments,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing (HPDC’10). Chicago, USA

[4] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic SLAdriven
provisioning for cloud applications,” in Proceedings of the 11th
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’11). Newport Beach, USA: IEEE Computer Society, May
2011, pp. 434–443.

[5] J. Yang, T. Yu, L. R. Jian, J. Qiu, and Y. Li, “An extreme automation
framework for scaling cloud applications,” IBM Journal of Research and
Development, vol. 55, no. 6, pp. 8:1–8:12, Nov. 2011.

[6] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud
computing on-demand resources based on pattern matching,” in
Proceedings of the 2nd IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’10). Indianapolis,
USA: IEEE Computer Society, Dec. 2010, pp. 456–463.

[7] M. Sladescu, A. Fekete, K. Lee, and A. Liu, “Event aware workload
prediction: A study using auction events,” in Proceedings of the 13th
International Conference on Web Information Systems Engineering
(WISE’12), ser. Lecture Notes in Computer Science, X. S. Wang, I. F.
Cruz, A. Delis, and G. Huang, Eds. Berlin, Germany: Springer, 2012,
vol. 7651, pp. 368–381.

[8] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Generation
Computer Systems, vol. 28, no. 1, pp. 155–162, Jan. 2012.

[9] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, 4th ed. Hobokem, USA: Wiley, 2008.

[10] H. Zhang, G. Jiang, K. Kenji Yoshihira, H. Chen, and A. Saxena,
“Intelligent workload factoring for a hybrid cloud computing model,” in
Proceedings of the 2009 IEEE Congress on Services (SERVICES’09).
Los Angeles, USA: IEEE Computer Society, Jul. 2009.

[11] Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic ReSource
Scaling for cloud systems,” in Proceedings of the 6th International
Conference on Network and Service Management (CNSM’10).Niagara
Falls, Canada: IEEE, Oct. 2010, pp. 9–16.

[12] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Proceedings of the
4th International Conference on Cloud Computing (CLOUD’11).
Washington DC, USA: IEEE Computer Society, Jul.2011, pp. 500–507.

[13] V. G. Tran, V. Debusschere, and S. Bacha, “Hourly server workload
forecasting up to 168 hours ahead using seasonal ARIMA model,” in
Proceedings of the 13th International Conference on Industrial
Technology (ICIT’12). Athens, Greece: IEEE, Mar. 2012, pp. 1127–
1131.

[14] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning in
massively multiplayer online games,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 3, pp. 380–395, Mar. 2011.

[15] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and S.
Dawson, “Markovian workload characterization for QoS prediction in
the cloud,” in Proceedings of the 4th International Conference on Cloud
Computing (CLOUD’11). Washington DC, USA: IEEE Computer
Society, Jul. 2011, pp. 147–154.

[16] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine
provisioning based on analytical performance and QoS in cloud
computing environments,” in Proceedings of the 40th
InternationalConference on Parallel Processing (ICPP’11). Taipei,
Taiwan: IEEE Computer Society, Sept. 2011, pp. 295–304.

[17] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp.
1830–1845, Jul. 2009.

[18] R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting:
The forecast package for R,” Journal of Statistical Software, vol. 27, no.
3, pp. 1–22, Jul. 2008

[19] M. Arlitt and T. Jin, “A workload characterization study of the 1998
World Cup Web site,” IEEE Network, vol. 14, no. 3, pp. 30–37, May
2000.

